
RESEARCH ARTICLE

Use of Brain MRI Atlases to Determine
Boundaries of Age-Related Pathology: The
Importance of Statistical Method
David Alexander Dickie1,2*, Dominic E. Job1,2, David Rodriguez Gonzalez1,2, Susan
D. Shenkin2,3, Joanna M. Wardlaw1,2

1 Neuroimaging Sciences, Centre for Clinical Brain Sciences (CCBS), The University of Edinburgh Medical
School, Edinburgh, United Kingdom, 2 Geriatric Medicine Unit, The University of Edinburgh, Royal Infirmary
of Edinburgh, Edinburgh, United Kingdom, 3 Scottish Imaging Network, A Platform for Scientific Excellence
(SINAPSE) collaboration, Glasgow, United Kingdom

* ddickie1@staffmail.ed.ac.uk

Abstract

Introduction

Neurodegenerative disease diagnoses may be supported by the comparison of an individu-

al patient’s brain magnetic resonance image (MRI) with a voxel-based atlas of normal brain

MRI. Most current brain MRI atlases are of young to middle-aged adults and parametric, e.

g., mean ±standard deviation (SD); these atlases require data to be Gaussian. Brain MRI

data, e.g., grey matter (GM) proportion images, from normal older subjects are apparently

not Gaussian. We created a nonparametric and a parametric atlas of the normal limits of

GM proportions in older subjects and compared their classifications of GM proportions in

Alzheimer’s disease (AD) patients.

Methods

Using publicly available brain MRI from 138 normal subjects and 138 subjects diagnosed

with AD (all 55–90 years), we created: a mean ±SD atlas to estimate parametrically the per-

centile ranks and limits of normal ageing GM; and, separately, a nonparametric, rank order-

based GM atlas from the same normal ageing subjects. GM images from AD patients were

then classified with respect to each atlas to determine the effect statistical distributions had

on classifications of proportions of GM in AD patients.

Results

The parametric atlas often defined the lower normal limit of the proportion of GM to be nega-

tive (which does not make sense physiologically as the lowest possible proportion is zero).

Because of this, for approximately half of the AD subjects, 25–45% of voxels were classified

as normal when compared to the parametric atlas; but were classified as abnormal when

compared to the nonparametric atlas. These voxels were mainly concentrated in the frontal

and occipital lobes.
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Discussion

To our knowledge, we have presented the first nonparametric brain MRI atlas. In conditions

where there is increasing variability in brain structure, such as in old age, nonparametric

brain MRI atlases may represent the limits of normal brain structure more accurately than

parametric approaches. Therefore, we conclude that the statistical method used for con-

struction of brain MRI atlases should be selected taking into account the population and aim

under study. Parametric methods are generally robust for defining central tendencies, e.g.,

means, of brain structure. Nonparametric methods are advisable when studying the limits of

brain structure in ageing and neurodegenerative disease.

Introduction
The structure of the human brain changes with age. Loss of normal grey and white matter
(GM, WM) and the appearance of WM hyperintensities are common on magnetic resonance
imaging (MRI) in cognitively normal older people. However, these changes in brain structure
vary between individuals and their patterns and consequences are not fully understood [1–7].
This variability in brain structure is present even between people of the same age and cognitive
function, and the range of variability increases with advancing age [2,8,9]. It is therefore diffi-
cult to establish whether brain MRI in any one individual subject is normal for age, or sugges-
tive of neurodegenerative disease, e.g. Alzheimer’s disease [2,3,10,11].

Alzheimer’s disease (AD) is now a major public health burden in many countries as their
populations age [12,13]. AD is generally characterised by accelerated loss of GM in the medial
temporal lobe, particularly in the hippocampus [14–17]. The earliest stages of pathological GM
loss are subtle and difficult to differentiate from normal variation [2,15]. This presents a prob-
lem because future treatments are likely to be most effective if administered in the earliest stages
of disease [13]. Sensitive and specific methods would help to detect whether subtle changes in
brain structure are normal for age or indicative of incipient neurodegenerative disease.

Voxel-based atlases of brain structure, although traditionally used for preprocessing in
brain MRI analyses (e.g., registration and segmentation; [18]), would also be useful for
highlighting abnormal brain structure in individuals [19–21]. An atlas of the range of normal
brain structure in ageing could be used in a similar manner to population derived charts used
for monitoring the weights and growth of children [22,23].

Existing voxel-based brain MRI atlases of the structure of the normal brain are largely de-
rived from parametric, e.g., mean ±standard deviation (SD), methods and assumptions [21,24].
Parametric atlases are created by aligning a number of subjects into a standard brain MRI
space, e.g. Montreal Neurological Institute (MNI) space; the mean and SD are then calculated
in each voxel to estimate the normal range of values for each voxel [24]. For example, the mean
±2 SD is used to estimate the 95% limits of each voxel value. However, the distributions of val-
ues within voxels need to be approximately Gaussian (i.e., “statistically Normal”) for these esti-
mates to be robust.

It is unclear whether the distributions of brain MRI voxel values are approximately Gaussian
during normal ageing [9,25,26]. Previous work has assessed the impact of non-Gaussian data
in group studies of younger subjects and diffusion tensor imaging [27–33]. We found no previ-
ous assessment of the impact of non-Gaussian data in individual, atlas-based studies of brain
volume or GM in older subjects (�60 years). Therefore, it remains important to determine if
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normal GM limits in older subjects are Gaussian or not because excessive GM loss is strongly
associated with cognitive decline and AD [15–17].

In this work, we examined publicly available structural brain MRI in normal older subjects
(�60 years) to: firstly, assess the data distributions within GM in old age; secondly, construct a
parametric atlas of GM in normal subjects at older ages; thirdly, construct a nonparametric
atlas of GM in the same normal older subjects; and finally, compare the abilities of parametric
versus nonparametric atlases to classify GM values as normal or abnormal in patients diag-
nosed with AD.

Methods

2.1 Subjects
Structural brain MRI data were obtained for 49 normal and 49 AD subjects (60–90 years and
demographically matched) from the Open Access Series of Imaging Studies (OASIS; http://
www.oasis-brains.org/). A further 49 normal subjects and 89 subjects diagnosed with AD (55–
90 years and demographically matched) were acquired from the Alzheimer’s Disease Neuroim-
aging Initiative (ADNI; adni.loni.usc.edu).

Using computerised random number generation, we randomly selected 49 normal older
subjects (>60 years) from each database to ensure the normal atlases we created were not bi-
ased to either cohort. In total, there were 98 normal older subjects available in OASIS with use-
able T1-weighted images and 138 from ADNI at the time of this study. We are preparing a
separate report which assesses the remaining 49 normal older subjects from OASIS and 89
from ADNI. These additional normal older subjects were not included here because the focus
of the current work is assessment of AD subjects using a normal older control atlas that is not
biased towards any particular cohort.

We used 49 AD subjects from OASIS and 89 AD subjects from ADNI to determine whether
sample size influenced classification results, i.e., whether misclassifications were partly due to
chance in smaller test groups. As with normal subjects, AD subjects were randomly selected
from each database using computerised random number generation, i.e., a spreadsheet of all
subjects was downloaded from the databases and a randomly generated number list was used
to randomly select subjects from each group.

The ADNI, through collaboration among government, private, and non-profit organiza-
tions (listed in the acknowledgements), recruited subjects from over 50 sites across the United
States and Canada to test whether imaging and other biological markers and clinical and
neuropsychological assessment can be combined to measure the progression and better treat
mild cognitive impairment (MCI) and early AD. For up-to-date information, see www.adni-
info.org.

At the time of the present study, ADNI and OASIS were the only public sources of structural
MRI brain scans with clinical metadata that fully represented normal older people (�60 years)
[34]. Normal subjects did not have dementia, but potentially had non-debilitating conditions
common in ageing, e.g., hypertension. Detailed demographic descriptions were provided previ-
ously [9,34].

All subjects used in this work gave written informed consent and the use of these subjects
was approved by the Institutional Review Boards (IRB) of ADNI (adni.loni.usc.edu) andWash-
ington University (http://www.oasis-brains.org/).

2.2 Brain MRI acquisition and initial processing
In both ADNI and OASIS, 1.5 tesla (T) magnetization prepared rapid gradient-echo
(MP-RAGE) T1-weighted MR brain images were acquired in the sagittal plane at
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approximately 1x1x1mm resolution. The full acquisition parameters are described elsewhere
[35,36]. Although 3 T images were available from ADNI, we used 1.5 T images from ADNI be-
cause only 1.5 T images were available from OASIS. Different field strengths may have created
a bias between the samples.

Non-brain structure was carefully removed from the images by the following steps:

1. Each subject was oriented to the position and angle of the MNI 152 template brain mask
(http://www.bic.mni.mcgill.ca/ServicesAtlases/HomePage), using Functional MRI of the
Brain’s (FMRIB’s) Linear Registration Tool (FLIRT) [37].

2. A brain mask of each subject was created by diffeomorphically warping the template to each
subject [38].

3. The resulting brain mask of each subject was applied to their FLIRT-registered image to re-
move non-brain structure.

4. The results of steps 1 and 2 were visually inspected by slice and errors, e.g. remaining skull,
manually corrected using the Multi-image Analysis GUI (http://ric.uthscsa.edu/mango/
download.html).

Next, we performed bias field correction and calculated GM proportion images (voxel-wise
GM proportion) using T1 intensity and spatial neighbourhood information [39]. Hypointense
areas in WM (hyperintensities on T2) that were incorrectly classified as GM were removed
from the GM proportion images via transformation to standard space with manually verified
classifications of GM.

2.3 Registration target (standard space)
Forty-nine subjects randomly selected from the normal group were used to create the registra-
tion target (standard space; Fig 1) by the following steps:

1. The brain extracted image of each randomly selected normal subject was orientated using a
6 point linear configuration (not stretched) to the MNI Colin27 brain extracted template
(http://www.bic.mni.mcgill.ca/ServicesAtlases/HomePage).

2. The mean (n = 49) voxel-wise intensity of 6 point linear orientated normal brains was calcu-
lated to create a 6 point “aged” brain

3. Each of the 49 randomly selected normal subjects were then 12 point oriented and linearly
deformed to the 6 point “aged” brain derived in step 2.

4. The mean (n = 49) voxel-wise intensity of 12 point linear orientated brains was calculated
to create a 12 point “aged” brain

5. Each of the 49 randomly selected normal subjects were then nonlinearly deformed [38] to
12 point “aged” brain derived in step 4

6. The mean (n = 49) voxel-wise intensity of nonlinearly deformed brains was calculated to de-
fine the final “aged” brain standard space (Fig 1).

Fig 1 illustrates that our standard space (derived from 49 randomly selected normal older
subjects) reflected the larger ventricles, sulcal spaces, and overall reduced brain tissue volume
associated with aged brains (see Introduction for references describing brain structure in age-
ing). This standard space was used to derive the parametric (mean ±SD) and nonparametric
(order-based) GM proportion atlas.
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2.4 Spatial normalisation to standard space
To spatially normalise all subjects to our standard space, we devised “nonlinear surface” spatial
normalisation (Nsurf). Linear spatial normalisation maintains within brain variance, e.g. ven-
tricle size, between subjects but does not always adequately account for head size differences.
Nonlinear spatial normalisation generally accounts for head size differences but removes with-
in brain variance between subjects.

It is important to maintain within brain variance because, if for example we used conven-
tional nonlinear registration, then all subject ventricles would be warped to the same size (Fig
2). The pathology we were interested in classifying, e.g., larger ventricles, would be removed
prior to classification if we used conventional nonlinear registration. Further, unlike previous
atlases, e.g., MNI (http://www.bic.mni.mcgill.ca/ServicesAtlases/HomePage), used for

Fig 1. Procedure to create a brain MRI standard space representative of aged (>60 years) subjects.
This is in the orientation of the commonly used Montreal Neurological Institute (MNI) template but reflects
features of brain ageing, e.g. larger ventricles; sbjs = subjects; pt = point; reg = registration; Nlin = nonlinear.

doi:10.1371/journal.pone.0127939.g001

Fig 2. Nonlinear surface (Nsurf—middle panel) normalisation compared to conventional linear (12 pt
—left panel) and nonlinear (NonL—right panel) normalisation. Two subjects (one cyan, the other red)
were overlaid after each normalisation to the atlas standard space. The yellow arrows highlight differences in
head size not accounted for by 12 pt normalisation. Most of the variance between subjects was removed in
conventional NonL normalisation (note especially the lateral ventricles in the centre of the brain).

doi:10.1371/journal.pone.0127939.g002
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localisation and segmentation, the atlases that we describe are attempting to define variance in
brain structure across individuals.

We therefore performed Nsurf by nonlinearly registering [38] each subject’s brain mask (bi-
nary image) to the standard space mask. Nonlinear transformations calculated with the brain
masks (binary images) were then applied to original MRI and GM proportion images of each
subject. This Nsurf spatial normalisation fully accounted for head size differences while also
maintaining the within brain variance of interest (Fig 2). We assessed the effect of Nsurf quan-
titatively by calculating lateral ventricle volume [38] and cortical thickness [40] before and
after normalisation.

2.4.1 Effect of Nsurf spatial normalization. The result of Nsurf spatial normalisation,
compared to conventional linear (12 pt) and nonlinear (NonL) normalisation, is illustrated in
Fig 2. We qualitatively observed that Nsurf spatial normalisation accounted more adequately
for head size differences than conventional 12 pt linear registration (Fig 2). Although it also ap-
peared that the within-brain structure was maintained (compared to conventional nonlinear
registration), we tested this quantitatively by computing ICV normalised lateral ventricle vol-
umes before and after normalisation. The nominal error (median = 2.76%, IQR = 1.89%) in
ICV normalised lateral ventricle volume following normalisation indicated that Nsurf did ade-
quately maintain within-brain variance (Fig 3).

Thus, inner parts of the brain (e.g., lateral ventricles) were not unduly altered by Nsurf.
However, the Nsurf algorithm, by focusing on the surface of the brain, may have had more ef-
fect on cortical thickness. Fig 4 shows that, while Nsurf increased cortical thickness (as ex-
pected given that the standard space was slightly larger than most subjects), it did so to the
same extent in both groups (ρAD = 0.86, ρControl = 0.85). In other words, Nsurf did not intro-
duce bias that would influence subsequent analyses.

2.5 Assessing voxel-wise GM distributions
Distributions of data are commonly assessed with the Kolmogorov—Smirnov test. This test
does not describe the shape of data; it determines whether or not the population from which
the data were derived had a Gaussian (or other defined) distribution. We therefore calculated
kurtosis and skewness to not only determine whether or not voxel-wise GM proportions were
Gaussian distributed, but to determine the shape of their distribution.

Fig 3. The effect of nonlinear surface normalisation (reg) on lateral ventricle volume expressed as a
proportion (prop) of intracranial volume.

doi:10.1371/journal.pone.0127939.g003
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2.5.1 Kurtosis. Kurtosis measures the central and outer appearance of a data distribution
[41]. It is calculated by eq 1,

Pn

i¼ 1

xi � mð Þ4

s4
ð1Þ

where xi are all the values of variable x, μ is the mean of variable x, and σ is the standard devia-
tion of variable x. The Gaussian distribution has kurtosis of 3 [41].

2.5.2 Skewness. Skewness measures the symmetry of a data distribution. It is calculated by
eq 2,

Pn

i¼ 1

ðxi � mÞ3

s3
ð2Þ

Fig 4. Cortical thickness before and after nonlinear surface (Nsurf) registration in AD subjects (top
panel) and the matched control subjects (bottom panel).Cortical thickness was increased to the same
level in both groups (as expected given the slightly larger standard space) and therefore Nsurf did not create
a bias that would influence subsequent analyses.

doi:10.1371/journal.pone.0127939.g004
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where xi-n are all the values of variable x, μ is the mean of variable x, and σ is the standard devi-
ation of variable x. The Gaussian distribution has skewness of 0. After calculating voxel-wise
kurtosis and skewness of GM, we created mean ±SD (parametric) and order-based (nonpara-
metric) atlases of GM.

2.6 Parametric and nonparametric atlases of normal ageing GM
proportion
GM proportion images from 98 randomly selected normal subjects (49 from ADNI and 49
from OASIS) were used to create parametric (mean ±SD) and nonparametric (order-
based) atlases.

2.6.1 Parametric (mean ±SD) GM atlas. In parametric (mean ±SD) based methods, per-
centile ranks and limits of distributions are approximated by eq 3,

p

2:5th m� ð2� sÞ
25th m� ð0:7� sÞ
50th m

75th mþ ð0:7� sÞ
97:5th mþ ð2� sÞ

ð3Þ

where p is the percentile rank, μ is the mean, and σ is the SD.
We used ±2 SD because it is a more generalisable estimate than the strict ±1.96 SD from the

Normal distribution table [42], which may artificially inflate errors.
If data follow the Gaussian distribution, parametrically estimated values of percentile ranks

should be approximately equal to nonparametric (order-based) values, e.g., the mean and me-
dian (50th percentile) are equal in Gaussian distributions [42–44].

2.6.2 Nonparametric (order-based) GM atlas. Nonparametric (order-based) methods
calculate percentile rank values by eq 4,

np ¼ jþ g

y ¼ 1

2
ðxj þ xjþ 1Þ if g ¼ 0

y ¼ xjþ 1 if g > 0

ð4Þ

where n is the number of subjects, for the tth percentile p = t/100, j is the integer part of np, g is
the fractional part of np, y is the tth percentile, and x1, x2,. . ., xn are the ordered values of each
brain volume.

2.7 Atlas based assessment
We used each atlas separately for quantitative, voxel-by-voxel assessment of the proportion of
GM in individual AD patients. In each voxel in standard space, the proportion of GM in the
AD subject was compared to the normal control atlas, and then assigned to the rank that was
closest to their proportion of GM (Fig 5). Proportions of GM in individual subjects that were
lower than the 2.5th percentile in the normal control atlas were classified as “abnormal”.

According to the method illustrated in Fig 5, each subject was compared to the parametric
(mean ±SD) atlas; and, separately, to the nonparametric (order-based) atlas.

We then identified voxels were there were differences in abnormal classifications between
parametric and nonparametric atlases. Because of the apparently lobular weighted pattern of
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atrophy in ageing and AD (e.g., [17]), we report voxel-wise differences between methods by the
major lobes (frontal, temporal, parietal, occipital).

Results
We assessed voxel-wise distributions of GM proportion in the normal ageing atlas subjects, be-
fore constructing mean ±SD (parametric) and order-based (nonparametric) GM atlases.

3.1 Voxel-wise GM distributions in the normal atlas subjects
Randomly selected examples of GM proportion distributions in the cortex and subcortical re-
gions are shown in Fig 6.

Fig 6 shows qualitatively that in these randomly selected example voxels, the distributions
of the proportion of GM are markedly non-Gaussian. To assess GM distributions quantitative-
ly throughout the cortex, we calculated kurtosis and skewness in each voxel with 98 subjects
(Fig 7).

Fig 7 shows that kurtosis and negative skewness was greatest in the hippocampal region
(dark red on left panel, dark blue on right panel). Median kurtosis across the entire cortex was
1.95 (interquartile range 0.95) and median skewness was 0.11 (IQR 0.92). Truly Gaussian data
have kurtosis 3 (yellow on the left panel in Fig 7) and skewness 0 (light green on the right panel
in Fig 7).

3.2 Parametric and nonparametric atlases of GM proportion
The parametric (mean ±SD) and nonparametric (order-based) atlases of the proportions of
GM in normal older subjects (n = 98; 60–90 years) are shown in Fig 8. The parametric atlas
often defined the lower limit of the normal (for age) proportion of GM as less than zero and
the upper limit of normal (for age) as greater than one (top panel Fig 8). As GM proportion
cannot be less than zero or more than 100%, this does not make sense mathematically or physi-
ologically and is therefore an undesirable consequence of using the mean ±SD (parametric)
method. The “true” limits are from zero to one, shown in the nonparametric (order-based)
atlas (bottom panel Fig 8). Further differences between the atlases are illustrated by the histo-
grams of voxel values in Fig 9.

Fig 5. Voxel—based assessment of brain structure with a normal reference atlas. The subject's original
voxel value is compared to each of the atlas percentile rank values and is then assigned the rank to which its
value is nearest.

doi:10.1371/journal.pone.0127939.g005
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Visually apparent differences between the parametric and nonparametric atlases are quanti-
fied in Table 1. Although they are often thought to be approximately equal [42,43], the mean
(parametric 50th percentile) and median (nonparametric 50th percentile) histograms differed
in skewness by more than 200%. The two methods agreed most closely at the 75th percentile,
but even here there were differences in the proportion of GM by an average of 52%.

Fig 6. Distribution of the proportions of grey matter in 98 normal subjects (aged 60–90 years) at
randomly selected voxels in the superior temporal gyrus (top left), superior central cortex (top right),
putamen (bottom left), and hippocampus (bottom right). These distributions are markedly different to the
assumed Gaussian (P) distribution (red dashed line).

doi:10.1371/journal.pone.0127939.g006

Fig 7. Voxel-wise kurtosis and skewness in the grey matter proportion atlas subjects (n = 98). The
Gaussian distribution has kurtosis of 3 (yellow on the left panel) and skewness of 0 (light green on the right
panel).

doi:10.1371/journal.pone.0127939.g007
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The greatest differences between atlases were at the lower limit (2.5th percentile) of the nor-
mal proportion of GM for age. This led to differing classifications between atlas methods in
many voxels (>25%) when used to assess subjects diagnosed with AD.

3.3 Parametric versus nonparametric atlas classifications in AD patients
For approximately half of the subjects in both AD samples, 25–45% of voxels that were classi-
fied as abnormal by the nonparametric atlas were classified as normal by the parametric atlas
(“normal P, abnormal NP”; Table 2). Moreover, approximately 40–50% of voxels that were
classified as abnormal by the parametric atlas were classified as normal by the nonparametric
atlas (“abnormal P, normal NP”).

Fig 8. Atlases of the distribution of the proportions of GM in normal older subjects. These were
calculated with parametric (mean ±SD; P—upper panel) and nonparametric (order-based; NP—lower panel)
methods in 98 aged normal subjects (60–90 years)

doi:10.1371/journal.pone.0127939.g008

Fig 9. Histograms of the parametric (mean ±SD; P) and nonparametric (order-based; NP) grey matter
(GM) atlas percentile ranks.

doi:10.1371/journal.pone.0127939.g009
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Proportions of “normal P, abnormal NP” classifications were approximately equal between
the frontal and temporal lobes (Table 3). There were concentrated regions of “normal P, abnor-
mal NP” classifications in the mid saggital caudal and anterior regions, in both samples (Fig
10). Approximately two thirds of “abnormal P, normal NP” classifications occurred in the tem-
poral lobe (Table 3), particularly in the hippocampal region (Fig 11).

Tables 2 and 3 and Figs 10–11 show that the incidences of differences between parametric
and nonparametric classifications were well replicated across both independent samples
(ADNI and OASIS).

3.4 Simulated non-Gaussian data
GM distributions were often similar to the Poisson distribution (Fig 6). We therefore used simu-
lated Poisson data to provide further evidence of differences between parametric and nonparamet-
ric methods in non-Gaussian data. Table 4 shows that parametric and nonparametric methods
are similar in central percentile ranks, e.g., mean versus median, but diverse towards extreme per-
centile ranks, e.g., 2.5th order versus mean-2�SD. This suggests that parametric estimates are gen-
erally robust for estimating central tendencies, e.g., means, even in non-Gaussian data.

Table 1. Kurtosis and skewness in parametric and nonparametric atlas histograms of the proportion of grey matter in whole brain voxels.

Percentile Kurtosis Skewness

Parametric (mean±SD) Nonparametric (order-based) %Err Parametric (mean±SD) Nonparametric (Order-based) %Err

2.5th 5.99 33.76 –464 1.55 5.27 –240

25th 3.29 4.63 –41 0.75 1.45 –93

50th 2.45 2.04 17 0.06 0.20 –233

75th 2.53 2.42 4 –0.52 –0.79 –52

97.5th 3.43 10.31 –201 –1.13 –2.69 –138

Note: %Err = percent error between Gaussian and rank-based atlases

doi:10.1371/journal.pone.0127939.t001

Table 2. Median percentage of differing classifications in AD subject voxels.

Classification ADNI (median, IQR) OASIS (median, IQR)

Normal P, abnormal NP 32.2, 8.2% 34.1, 9.3%

Abnormal P, normal NP 48.4, 6.2% 45.5, 6.6%

Note: ADNI = Alzheimer’s Disease NeuroImaging Initiative; OASIS = Open Access Series of Imaging Studies; IQR = interquartile range; P = parametric;

NP = nonparametric.

doi:10.1371/journal.pone.0127939.t002

Table 3. Proportions of differing classifications by lobe.

Frontal Temporal Parietal Occipital

Normal P, abnormal NP ADNI 0.36 0.38 0.09 0.17

OASIS 0.39 0.41 0.08 0.12

Abnormal P, normal NP ADNI 0.28 0.57 0.06 0.08

OASIS 0.27 0.61 0.06 0.06

Note: P = parametric; NP = nonparametric; ADNI = Alzheimer’s Disease Neuroimaging Initiative; OASIS = Open Access Series of Imaging Studies.

Rounding errors mean that not all rows in this table sum to exactly 1.

doi:10.1371/journal.pone.0127939.t003
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Increasing the simulation sample size from 98 to 10000 brings the parametric and nonpara-
metric estimates of extreme percentile ranks slightly closer but only by approximately 10%
(Table 4). The minimum value in either randomly generated sample was zero but the paramet-
ric method estimated the 2.5th percentiles to be negative. This is consistent with our subject
data that suggest nonparametric methods may be more robust for defining the limits of brain
structure if large amounts of data are available.

Discussion
To our knowledge, we have presented the first nonparametric brain MRI atlas of the propor-
tions of GM in normal older subjects (�60 years). Up until now, many MRI atlases of the nor-
mal brain were designed for image registration and other pre-processing steps. These were
predominantly for use in studies of young subjects, and were derived using parametric (e.g.,

Fig 10. Locations of “normal P, abnormal NP” (FN) voxels in Alzheimer’s disease (AD) subjects (aged
60–90 years) from ANDI (n = 89) and OASIS (n = 49). These were determined via voxel assessment with
the parametric (mean±SD) and nonparametric (order-based) grey matter atlases; P = parametric;
NP = nonparametric; ADNI = Alzheimer’s Disease Neuroimaging Initiative; OASIS = Open Access Series of
Imaging Studies.

doi:10.1371/journal.pone.0127939.g010

Fig 11. Locations of “abnormal P, normal NP” (FP) voxels in Alzheimer’s disease (AD) subjects (aged
60–90 years) from ANDI (n = 89) and OASIS (n = 49). These were determined via voxel classification with
parametric (mean±SD) and nonparametric (order-based) grey matter atlases; P = parametric;
NP = nonparametric; ADNI = Alzheimer’s Disease Neuroimaging Initiative; OASIS = Open Access Series of
Imaging Studies.

doi:10.1371/journal.pone.0127939.g011

Table 4. Parametric and nonparametric percentile rank values in simulated non-Gaussian data.

Percentile rank 2.5th 25th 50th 75th 97.5th

P NP P NP P NP P NP P NP

N = 98 -2.16 0.00 0.65 1.00 2.16 2.00 3.68 3.00 6.49 6.00

N = 10000 -1.98 0.00 0.60 1.00 1.98 2.00 3.37 3.00 5.95 5.00

Note: N = number of points in randomly generated data; P = parametric; NP = nonparametric. These data are from Poisson distributions that were

randomly generated using the “poissrnd” function in MATLAB.

doi:10.1371/journal.pone.0127939.t004
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mean ±SD) methods [21,24]. Parametric estimates are generally robust for defining central ten-
dencies, e.g., means, of brain structure. But brain MRI voxel data (e.g., the proportion of GM)
must approximate a Gaussian distribution to reliably extrapolate parametric values (e.g., mean
±SD) and define the limits of normal brain structure [42,43].

We have shown that the voxel-wise proportions of GM in normal older subjects aged�60
years often did not follow a Gaussian distribution. This led to nonsensical estimates of the
lower limits of GM proportion by the parametric atlas, e.g., the parametric atlas estimated the
lower limit of GM proportion to be negative in many voxels. Approximately 70% of the cortex
and subcortical GM in normal older subjects (�60 years) had either high kurtosis and/or nega-
tive skewness. The largest deviations from the Gaussian distribution were in temporal and
frontal regions, which are both important regions that are affected early in dementias [16].
This resulted in many differing voxel classifications between parametric and nonparametric at-
lases when used to assess subjects diagnosed with AD.

For approximately half of the subjects in both AD samples, 25–45% of voxels that were clas-
sified as abnormal by the nonparametric atlas were classified as normal by the parametric atlas.
The pattern of differing classifications in AD subjects according to statistical method was re-
peated in two independent samples (ADNI and OASIS).

Voxels classed as abnormal in the parametric atlas but normal according to the nonpara-
metric atlas were largely in the temporal lobe (~60%), and specifically focused in the hippo-
campus. This suggests that this region may have a wide and irregular variance and be
particularly unsuited to parametric Gaussian analyses in older subjects. Moreover, many
(~40%) of voxels classed as normal in the parametric atlas but abnormal according to the non-
parametric atlas were found in frontal and occipital regions. Although less often reported in re-
search, frontal-occipital pathology is often noted in patients diagnosed clinically with AD and
other dementias [45].

Although nonparametric, order-based methods are said to provide “true” percentile rank
values [42], these values are only true in the samples from which they were derived. In other
words, the nonparametric percentile rank values calculated here do not necessarily reflect pop-
ulation values. Although we used “parametric” and “Gaussian” somewhat interchangeably,
parametric models do not always use Gaussian distributions and Gaussian models do not need
to be parametric. For example, Gaussian mixture models have been proposed to estimate brain
MRI distributions in younger subjects [28], but do not seem suitable for the highly skewed dis-
tributions we found in older subjects (e.g., Fig 6). Our work emphasises that large amounts of
brain MRI data from normal older subjects are required to define normal ageing population
distributions. Hence we are collecting such data now and encourage others to join our initiative
(http://www.sinapse.ac.uk/research-resources/brains-project). With these large volumes of
data we may be able to propose distributions that more accurately reflect underlying brain
image data distributions, e.g., mixture or Poisson distributions.

There appears to be a reasonably well defined lobar pattern of atrophy in ageing and
neurodegenerative disease [14,15,17], therefore we reported differences in voxel-wise classifi-
cations by automated segmentation of the major lobes. We performed manual checking for
gross errors, but minor errors were not edited due to the impracticality of manually editing
hundreds of segmentations consisting of small isotropic voxels. Moreover, we could not tabu-
late voxel-wise differences in classifications for subregional volumes, e.g., the hippocampus.
Further work is required to improve the accuracy and efficiency of sub-lobar segmentations
in older subjects [46].

We did not implement other brain MRI processing methods that are commonly used in
younger subjects. In particular, we did not apply voxel smoothing, nor use conventional non-
linear registration (we used our own “Nsurf” normalisation) for the following reasons. We did
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not use conventional nonlinear registration because we wished to maintain the naturally wide
anatomical variance in the brains of normal older people. Voxel smoothing may mask subtle
differences between normal and diseased brains because it essentially “averages” the intensities
of adjoining voxels [2,3,9,11]. Moreover, smoothing is a subjective process with no quantita-
tively derived optimal parameters as yet [47]. This means that we currently do not know how
the distributions of voxels in the ageing brain will behave after conventional nonlinear registra-
tion and smoothing. Our finding that the proportions of GM are least Gaussian in the hippo-
campus is in conflict with a previous study that found the hippocampus voxel data follow an
approximately Gaussian distribution [26]. However, the 85 subjects in that study were much
younger (mean age ~31 years, SD ~8.0; range: 17–60), and underwent voxel smoothing, which
makes data more Gaussian [48,49].

We have presented a nonparametric method that does not require data to be Gaussian, and
therefore an alternative method when the use of smoothing cannot be justified. For example,
when looking for subtle differences in brain structure in individual subjects at the extremes of
life and/ or on the cusp of overt neurodegenerative disease [2,3,8,11,15].

We defined the normal limits of GM proportion in older people from 98 randomly selected
normal control subjects in ADNI (n = 49) and OASIS (n = 49) that were aged between 60 and
90 years. These data were cross sectional and may therefore contain sampling biases. There are
large differences in brain volume between these ages [1–7]. This number of subjects is not suffi-
cient to define population values but is consistent with previous studies of brain structure in
ageing [34]. Moreover, percentile rank values became stable after approximately 70 subjects
were added to the nonparametric atlas (shown via oscillation analysis; S1 Fig in Supporting In-
formation). Future work will aim to create separate atlases for each year of life. Further, we will
incorporate other clinical and cognitive data into these atlases, e.g. atlases for specific blood
pressures and/ or cognitive ability. We have created an atlas and assessment system that is de-
signed, via percentile rank classification, to highlight potentially problematic areas of brain
structure in individual patients. This system is not designed to classify individual patients into
groups, e.g., AD versus control, which has been done previously [51].

We illustrated our novel atlas-based assessment method using publicly available images of
the proportions of GM from normal older subjects and subjects diagnosed with AD. We did
not test our atlases in the remaining normal subjects with T1-weighted images from ADNI
(total N = 138) and OASIS (total N = 98) because this is the focus of another report currently
in preparation. However, the software we developed may be applied to any image sequence
from any group. For example, we intend to create a T1–weighted percentile rank atlas from full
term infants to assess brain structure in preterm infants [50]. Our software and data from over
1000 cognitively tested normal subjects (0–90 years) will be made available via the BRAINS
bank (http://www.sinapse.ac.uk/research-resources/brains-project). Our software was coded in
MATLAB so may easily be implemented into commonly used brain MRI processing pipelines,
e.g. Statistical Parametric Mapping (SPM).

Assessments of brain MRI from individual subjects are becoming increasingly important as
AD and other neurodegenerative diseases become a major public health burden [12,13]. Com-
parison of individual scans with atlases of normal older subjects may assist in future to diag-
nose faster-than-usual brain tissue loss in prodromal dementia, or to diagnose types of
established dementia by differentiating patterns of abnormal brain tissue. We have demon-
strated that much of the cortex and subcortical GM voxels are not distributed approximately
Gaussian in normal ageing. We therefore conclude that nonparametric atlases may be useful
when assessing possible neurodegenerative disease in older age.
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Supporting Information
S1 Fig. Determining the number of subjects required to recreate a complete nonparametric
atlas representative of the total sample n = 98 nonparametric atlas. Each coloured line repre-
sents the change in each percentile rank value (2.5th—97.5th) given the addition of more sub-
jects. Seventy subjects (~71%) were required to create a nonparametric atlas that was 95%
similar to the total n = 98 nonparametric atlas (shown by the dashed vertical line) and 90 sub-
jects (~92%) were required to create a nonparametric atlas that was 99% similar to the total
n = 98 nonparametric atlas (shown by the solid vertical line).
(TIF)

S1 Text. Oscillations of percentile rank values in the nonparametric atlas, given the number
of subjects, are shown in S1 Fig. This shows the percent similarity of nonparametric atlas his-
tograms (with n = 10, 20, . . ., 98 subjects) to the total n = 98 nonparametric atlas histogram.
Oscillations in percentile rank values were limited after 70 subjects had been added to the non-
parametric atlas (S1 Fig).
(DOCX)
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